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Abstract

A study was conducted for the heat transfer and the formation of solid banks inside a bath of molten slag. This study
is motivated by the need to predict the formation of a protective thermal barrier for the refractory brick walls inside
smelting furnaces. A mathematical model for natural convection dominated solid liquid phase change with embedded
heat sources is presented. A scale analysis is conducted yielding algebraic expressions for the steady-state minimal side
bank thickness and location, molten volume fraction and average Nusselt number at the surface of the bath in terms of
the Rayleigh number. The predictions of the scale analysis are validated with numerical results and their range of

application are delineated.
© 2003 Elsevier Science Ltd. All rights reservd.

1. Introduction

Electric arc furnaces (EAFs) are used for material
processing that requires high powers and temperatures.
Their main applications are the smelting of materials
such as copper, nickel calcine, steel, pre-reduced iron
ore and the melting/recycling of scrap metals from the
automobile and metallurgical manufacturing industries
[1]. A cross view of a typical electric arc smelting furnace
is depicted in Fig. 1. The electrodes (only one electrode
is shown here) are submerged in a bath of electrically
conducting slag. The current is carried between the
electrode tips in the slag to generate the heat (Joule ef-
fect) required for the smelting process. Heat losses are
experienced at the surface of the slag and through the
refractory brick walls.

Several studies have been conducted to predict the
heat transfer and the flow circulation in the pools of
EAFs [2-10]. The common objective of all these inves-
tigations is to gain basic understanding of the way in
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which energy transfer and utilisation takes place in the
system so that the operational guidelines and the furnace
designs are improved. Due to their complexity, solid/
liquid phase change problems related to EAFs have re-
ceived, however, comparatively little attention [11].

A fascinating melting/solidification phenomenon that
arises in high temperature smelting furnaces is the for-
mation of solid layers, called banks, on the inside sur-
face of refractory brick walls (see Fig. 1). The presence
of these banks is highly desirable as they serve as a
protective thermal barrier for the refractory brick walls,
thereby maintaining the integrity of the furnace and
prolonging its active life. On the other hand, too thick a
bank is detrimental to the furnace throughput as the
volume available for smelting is reduced. Keeping banks
of optimal size is therefore crucial in the safe and prof-
itable operation of smelting furnaces. Unfortunately,
due to the hostile conditions that prevail in the slag pool,
probing their shape and their motion is a difficult task.
The alternative is to predict their behaviour with
mathematical models in terms of the furnace operating
conditions.

The melting/solidification of the inner banks is de-
pendent on the power transmitted to the slag pool, the
heat transfer across the boundaries and the flow circu-
lation in the slag bath. The flow circulation may be
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Nomenclature
A coefficient
Ay area of a control volume face f (m?)

constant (mushy zone)

coefficient

Biot number (hH, /k)

heat capacity (J/kg K)

liquid fraction

gravitational acceleration (m/s?)
height (m)

heat transfer coefficient (W/m? K)
sensible enthalpy (J/kg)

latent enthalpy (J/kg)

total enthalpy (J/kg)

thermal conductivity (W/m K)
Nusselt number (¢”/ (kAT /H,))
pressure (Pa)

Prandtl number (%)

heat flux (W/m?)

volumetric heat sourcem(\SN/m“)
Rayleigh number (’("'JTTH")

bank thickness (m)

,8,,8,,8A; source terms

temperature (K)

time (s)

x velocity component (m/s)

v velocity component (m/s)
volume of the control volume (m?)
width (m)

x coordinate (m)
y coordinate (m)

Greek symbols

thermal diffusivity (m?/s)

thermal expansion coefficient (K~!)
variable (u, v or i)

constant

coefficient

emissivity

dimensionless temperature number (AT/
(22 /High))

latent heat of fusion (J/kg)

viscosity (kg/m s)

density (kg/m?)

Stefan-Boltzmann constant (W/m2K*)
convergence criterion

O N2 L™ R

R AT E >

Subscripts

w wall

b bath

up upper bank or wall
bottom bank or wall
side side bank

1 liquidus

s solidus

e electrode

f face of a control volume
averaged value
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Fig.

1. Cross view of a typical smelting furnace.

caused by many factors such as the transfer of jet mo-
mentum at the bath surface, the electromagnetic forces
induced by the passage of electric current, the natural
convection resulting from thermal gradients and gas
bubble driven circulation. To the authors’ knowledge,
the simultaneous effect of all these factors on the flow
circulation has never been elucidated before let alone
when melting and solidification of the slag banks take
place at the inner walls.

The following investigation focuses on the solid—
liquid phase change problem at the inner walls of a bath
filled with slag. Heat transfer in the layer of molten
metal lying underneath the slag is ignored and it is as-
sumed that the principal driving force for the slag flow is
limited to buoyancy. The momentum of the impinging
jet, the effect of gas bubble and the electromagnetic
forces are neglected. This scenario corresponds to an
EAF for which the electrodes are submerged in the slag
bath and operate at moderate power (less than 150 kW).
Based on order-of-magnitude estimates, Szekely et al. [5]
and Sheng et al. [7] have shown that in this case the
electromagnetic stirring and the gas bubble circulation
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are small compared to buoyancy driven flow. Moreover,
the thermal energy transferred from the electrode to the
bath is implemented in the computational model as
volumetric heat sources distributed in the slag directly
under the electrode [11].

This paper is a first step in the development of
mathematical tools for predicting the formation of slag
banks in EAFs. Its objective is to come up with simple
algebraic formulae that provide basic information on
the steady-state thermal behaviour of a slag bath with
solidification at the surface of its inner walls. Key pa-
rameters such as the minimal side bank thickness, mol-
ten volume fraction and surface heat loss are reported in
terms of the heat load to the bath. A scale analysis is first
performed and its predictions are next confirmed with
numerical simulations.

2. Physical model and numerical procedure

The physical system considered in the present study is
illustrated in Fig. 2. A bath of height H, and width 2%,
is filled with slag. The lateral wall of thickness W, and
the bottom wall of thickness H,, are made of refractory
bricks. At time ¢ < 0, the entire system is at a uniform
temperature 7; = T;. At time ¢ = 0, heat is suddenly re-
leased from uniformly distributed sources in the slag
pool underneath the electrode (region ABHG, Fig. 2)
and, as a result, buoyancy driven flows are triggered.
Heat is lost to the surroundings via the top surface of
the pool (ABC) and via the lateral and bottom walls
(CDEF). When the temperature of the slag in the vi-
cinity of the brick walls falls below the liquidus, solid
banks appear and grow in size until, at steady state, the
heat lost at the boundaries matches the heat gained from
the volumetric heat sources.

The dimensions of the system and the physical
properties of the slag and of the refractory bricks are
summarised in Tables 1-3 respectively. The mean tem-
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Fig. 2. Schematic representation of the slag bath and of the
brick wall.

Table 1

Physical dimensions of the bath
w, 0.3 m
W 2.6 m
W, 0.7 m
H, 1.0 m
H, 1.0 m

Table 2

Thermophysical properties of the slag
P 3550 kgm™?
¢ 1512 Jkg ' K-!
A 8.23 x 10° Jkg™!
k 4 Wm ! K-!
u 0.03 kgs~'m™!
solidus (7; ) 1842 K
liquidus (7)) 1872 K
p 1.0 x 107 K!
Trer 1872 K
€ 1

Table 3

Thermophysical properties of the refractory bricks
o 2851 kgm™3
¢ 1100 Jkg ' K™!
k §Wm ' K™!
€ 1

perature of the freeboard gas (the gas above the slag
surface) is assumed to be constant (7. ., = 1500 K) with
an average heat transfer coefficient /., = 250 Wim? K
[9,10]. The outside surface of the bottom brick wall is air
cooled with the air temperature set at T, gown = 300 K
and a heat transfer coefficient A, gown = 10 W/m? K.

The mathematical model for the heat transfer inside
the slag bath rests on the following assumptions:

1. The depth of the bath (direction perpendicular to Fig.
2) is much larger than the plane dimensions (x—y) so
that a two-dimensional analysis can be applied. Also,
the fluid motion and heat transfer are symmetrical
about the vertical centre line.

2. Circulation in the slag pool is caused by natural con-

vection resulting from thermal gradients only.

3. The flow in the liquid pool is laminar, incompressible,
and Newtonian and buoyancy is taken into account
in the momentum equations via the Boussinesq ap-
proximation (ff - AT < 1).

With the foregoing assumptions, the governing equa-
tions for the conservation of mass, momentum and en-
ergy are stated as

Ou v

a2y = (1)
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Table 4
Boundary conditions
Boundary T u v
ABC —ko 5 = hup (T — Tp) +e0(T* = T ) &=0 v=0
CD f;—}r =0 - -
DE 7kw Da% = hdown(T - TOC,dOwn) + SO'(T4 — T;‘c,down) - -
EF 7kw%§: = hdown(T - T:x;,down) + 80(T4 - T:‘c,do\vn) - -
FG T_0 - -
GA ) u=0 x_
Ou ou Ou *u  du 10 "
&y “a_:ﬁ(ﬁ+ﬁ)“a_p+5x @ 5= (9) O<x<m o<y<m) )
t x Yo pNOXT Oy p ox 0 elsewhere
dv Qv v v v 19 ite-di i ai inte-
ST CCCR S op BT —Tur) 4, The’ finite-difference equations are obtained on inte
o Oox Oy p\x? Oy p dy grating the conservation equations, Eqs. (1)—(4), over
(3) each of the control volumes in the (x,y) plane. Second
order finite differences are used for the diffusive terms
o 0 i i ok i i i -
AUt —=o s 45 | +Sa+S, 4) Whlle the power lavy scheme is retained f(_)r the convec
ot ox Oy ox?> Oy tive terms [13]. An implicit Euler scheme is used for the

The corresponding boundary conditions are provided in
Table 4. Solid-liquid phase change in the slag is treated
with an enthalpy-porosity method [12]. In this method,
the total enthalpy is split into sensible and latent heat
components, i.e.,

I=i+Ai (5)

where Ai = fi /. fL represents the local liquid fraction
and 2 is the latent heat of fusion. The liquid fraction
varies linearly between the solidus 7; and the liquidus 7;
in the following manner:

0 (m>7)
fi={ L (n<T<T) (6)
1 (n<T)

Therefore, the source term Sy; in the energy equation (4)

becomes

o(Ai O(Ai
(a) o)

U@(Ai)
ot Ox

Si:—
A ay

(7)

The liquid fraction is also used to drive the velocity
components to zero in the solid phase of the slag and
in the brick walls via the source terms S, and S, in the
momentum equations (2) and (3):

3
S{_:l%
p(fL+7)

with Apun = 10° and y = 1073, This numerical artefact
can be viewed as a way of modelling the transition zone
between the solid and liquid phases.

Finally, the source term S, in the energy equation (4)
is used to mimic the heat input from the electrode (re-
gion ABHG, Fig. 2):

®)

mushU;

time stepping procedure. The resulting finite difference
equations for the general dependent variable ¢ at node P
have the form

Niaces Niaces
S vrbidr = Tr(Vy),Ar + SV (10)
7 7

The set of linearized equation (10) is then solved itera-
tively with a line-by-line tridiagonal matrix algorithm
(TDMA). The SIMPLE algorithm is adopted for the
pressure—velocity coupling. At a given time, convergence
is declared when the dimensionless residuals for the
mass and momentum conservation equations are less
than 10~* and the dimensionless residual for the energy
equation is less than 10~°. More stringent convergence
criteria were employed, but the results, obtained after
significantly longer computational times, did not show
perceptible changes in the final solution.

The above computational model has been success-
fully tested and validated with experimental and nu-
merical data for the melting and solidification of various
substances [14,15]. As an example of validation, Fig. 3
compares the predicted solid-liquid interfaces with the
experimental results reported by Gau and Viskanta [16]
for the melting of gallium from a heated wall. The nu-
merical simulation was carried out with a grid size of
42 x 32 control volumes and a time step of 5 s. Calcu-
lations performed with finer meshes and shorter time
steps did not show perceptible differences with the pre-
sent results.

3. Scale analysis

This section presents an order of magnitude analysis
yielding algebraic relations for the steady-state minimal
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Exp. Results [16]

Fig. 3. Solid-liquid interface position and shape predicted and
measured for a cavity filled with gallium.

side bank thickness and location, molten volume frac-
tion and average Nusselt number at the top surface of
the bath as a function of the Rayleigh number. In the
following section, these relations will be validated with
numerical results.

Inside the liquid zone of size W, x H, (region ABHG,
Fig. 2), hereafter referred as the heating zone, the heat
sources are uniformly distributed. It is assumed that in
this region the buoyancy driven vertical flow velocities
remain larger than the horizontal velocities. Neglecting
the effect of thermal diffusion with respect to convection,
the energy equation (4) then becomes

aT "
po— =L (11)
dy pc
or, in terms of magnitude,
AT "
v =1 (12)
Hy, pc
AT is the temperature difference AT = T — Tj. In a sim-
ilar manner, the momentum equation (3) leads to
2
— = PgAT 13
m = Pe (13)
Combining Egs. (12) and (13), one obtains the following
approximations for the vertical velocity and temperature
in the heating zone:

o]
(a/ Hp)
AT

(%) )

where the Rayleigh and Prandtl numbers are defined as

=Ra'’PS (14)

= Ra**pr3 (15)

"mrrs
_gpbq"Hy P (16)

R
“ ko o

At steady state, the banks inside the bath no longer
change in size or in shape and the heat loss at the surface
of the bath (line ABC, Fig. 2) may be evaluated with the
help of thermal resistances, yielding

" —\ !
qloss ( 1 SUP)
S .. (17)
(T —Tew) \Biy Hy

The Biot number is defined here as

hu UWnH
Biup.down = % (18)

The heat transferred to the banks comes from the hot
fluid flowing along the solid-liquid interface, i.e.,
Qain ~ Wy ' (pWe[v])(cAT). Then, from Egs. (14) and
(15),

//ain e RaPr
= ()% (19)
Fh(TL - Toc,up) VVb Hup

where the dimensionless number 0yp down is defined as

T — T own
Oup.down = (T = Teoupdown) (20)

2
o 1
<H_b) gPHy
Combining Egs. (17) and (19), the mean thickness of the
bank at the surface of the pool is then given by

E: % Q“P _ 1 (21)
Hy W. ) RaPr  Biy,

In a similar fashion, the mean thickness of the bank
sitting at the bottom of the pool is approximated by

Sdown _ (VVb) Odown 1 kHw

Hb We RaPr - Bidown - kab

(22)

As one moves away from the heating zone along the x
axis, the top and bottom banks increase in size. In the
range of the operating conditions considered in the
present study, both banks eventually merge on the left
vertical wall. As depicted in Fig. 4, the thickness of the
side bank at this point is minimal and it represents the
most vulnerable spot on the lateral brick wall. From a
practical point of view, predicting the location Hgq. and
the thickness sgq. of the side bank at this point is
therefore essential for the safe operation of the furnace.
For the sake of the present analysis, it is assumed that
the thickness of the top and bottom banks increases
linearly in the x direction (Fig. 4). Then, for the top
bank,

Sup(x)  (Ho — Hyge) X <0< X Wy _sside> (23)

Hy B (Wb—Sside) Fb \ﬁb\ H,

which yields an average value of
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Fig. 4. Schematic representation of the bath in the presence of
a lateral bank. The top and bottom banks are assumed to in-
crease linearly with x, Eq. (23).

E 1 Hside
—==(1- 24
n=a(-7) @
Similarly, for the bottom bank, one finds
Sdown 1 Hside

=_ 2
=) @

These average values for the thickness of the top and
bottom banks are consistent with those of Egs. (21) and
(22). Combining Eq. (21) with (24) and Eq. (22) with
(25) and rearranging, one obtains the following relations
for the minimal side bank thickness siq. and location
Hside:

Sside . VVe RaPr 1 + 1 + 1 T kHw
2 Biup Bidown kab
(26)

I/Vb a Wb Oup + edown

Hside Hdown - gup 1 kHw 1

=\g g )\ 1Tz —+ + =
Hb Hdown + gup Bldown kab Blup
1 kH,, 1 1

- - 27
Bigown kywHy + Biy, + 2 (27)

Both Eqgs. (26) and (27) are based on a characteristic
length scale of W, — sgq. for the liquid bath width.

The second parameter of interest is the molten vol-
ume fraction in the bath. It is defined as

1
H, W,

o Hy, W

F=g | ] Aaa (28)
This parameter provides information on the overall
volume occupied by the banks inside the bath. A frac-
tion of 1 indicates that the entire bath if filled with liquid
metal while a fraction of 0 means that the entire bath is
frozen solid. When convection heat transfer inside the
liquid pool dominates, i.e., for large values of the Ray-
leigh number (Eq. (16)), the hot slag flowing along the
top surface impinges on the lateral wall thereby pre-

venting the direct formation of a side bank. As a result,
banks appear and grow in size mainly from the top
surface where the heat loss to the freeboard is significant
(compared to the heat losses through the side and bot-
tom walls) and from the bottom wall where the slag
temperature sinks below the liquidus. Then, from Eqs.
(21) and (22), the molten volume fraction (28) may be

approximated by f; ~ 1 — T‘ﬁ{%, yielding

0 (Ra < Rayp)
1 [ _ < i3 ) 0up+0dow“]

— Ra 77 Pr

fu= ’

+[1+BilTp+ i +kHw} (Rag < Ra < Ray)

Bigown ~ kwHyp

1 (Ra > Ray)
(29)
where
Ray = hp + B (30)
(3 )pr(1 4 gk g+ )

W, Biup | Bigown | kwHy
and
Ray = D - Ddonn (31)

We Pr 1 1 kHy
( W > (Bfup + Bigown + kw Hy, )

On the other hand, when conduction heat transfer pre-
vails inside the liquid pool, i.e., for small Rayleigh
numbers (Eq. (16)), the buoyancy driven flows are weak
and a side bank may appear and grow in size simulta-
neously along with the top and bottom banks. Com-
bining Eq. (29) with Egs. (24)—(27) and rearranging, one
obtains

— 1 W. RaPr 1 1 1 kH,,

= |4 ——+
fL 2 I/Vb Hup + edown 2 Blup Bldown kab

(32)

Both Eqgs. (29) and (32) will later be compared to the
numerical results in order to define precisely their range
of application in terms of the magnitude of the Rayleigh
number Ra.

The third parameter of interest is the average Nusselt
number at the top surface of the bath. It provides in-
formation on the magnitude of the heat loss from the
top surface to the freeboard. For convection dominated
heat transfer, the average Nusselt number is evaluated
by combining Egs. (17) and (21) yielding

?loss VVE ) RaPr (
e (e ) 0 33)
Hib (TL - T'x;,up) ( I/Vb Gup

Nuy, =
If conduction is the prevailing mechanism of heat
transfer in the bath, i.e., for small Rayleigh numbers, the
heat released from the sources is mainly transferred to
the surroundings via two thermal resistances,

Tin — Too,up Tin — Toc.down _ qub W, 34
LeL S o 1 4 He W ( )
kT g E T haown | kw b
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Table 5
Dimensionless numbers
Number Value

Pr e 113

Biy, h?i 200.0

Bigoun laowlle . 57.8

) _
Oup (T = Tp) [(H—h) ﬁ] 6.59 x 10"
) -1
Odown (TL = T down) {(ﬁ) &,,]—,IJ 2.78 x 1012
Ra sobd 1.9 x 10-1.9 x 101

kot

T, is a characteristic temperature inside the heating
zone. Rearranging Eq. (34) for Tj, and keeping in mind
that the first term on the left-hand side represents the
heat lost at the top surface, one finds the following ex-
pression for the average Nusselt number for small
Rayleigh numbers:

Hyk
o Hb (1 Odown ) <1 + Bidiwn + kew Hy )

Nugy = -2
Uup W, 0up 24 L4 1 +H“k>

Biyp ' Bigown = kwHp

1 We  RaPr
(1 +L> +Fb Odown — Oup

Biup

X

(35)

Once again, in the following section, Egs. (33) and (35)
for the Nusselt number will be tested against the nu-
merical predictions.

The dimensionless numbers were estimated with the
physical dimensions and properties provided in Tables
1-3. They are reported in Table 5. The Biot numbers in
Table 5 were estimated with an overall heat transfer
coefficient that takes into account the radiation effect,
ie.,

. 1
hUP~d0Wﬂ ~ h;(;)l,](}/own + E O-b(Ti + TOO-UPAOWU)(]]Z + Tfo.up‘down)
(36)

The heat load to the bath varies from 15 to 150 kW
yielding Rayleigh numbers ranging from 1.9 x 10" to
1.9 x 10",

4. Results and discussion

All simulations reported here were carried out until
the steady-state regime was reached. Steady state is de-
clared when the following condition is satisfied:

" "
fABCDEFq dl —q"WeH, .
q/// WéHb < A (37)

where y = 5 x 1073, Calculations were performed on a
SGI ORIGIN 2000 computer and the CPU time for a
typical run ranged from 12 to 24 h depending on the grid

size and the time step. Every time the Rayleigh number
was changed, the accuracy of the numerical predictions
was checked by performing a grid refinement study. As a
result, grid sizes stretch from 50 x 30 control volumes to
95 x 70 control volumes. The effect of the time step to
reach a steady-state solution was also investigated and,
in general, a time step of 100 seconds was retained.
Calculations performed with smaller time steps yielded
the very same steady-state solution after, however,
considerably longer computational times.

Fig. 5 exemplifies the effect of the Rayleigh number
on the minimal side bank thickness sq4. and location
Hgqe. Each datum on this figure is the result of a full
simulation. The numerical results are also compared
with the predictions of the scale analysis from the pre-
vious section. It was shown, in Eq. (26), that the minimal
thickness of the side bank is a linear function of the
Rayleigh number, i.c.,

Sside
"~ B — ARa (38)

where B and A4 are constants. For the present problem,
the scale analysis reveals that B ~ 1 and 4 ~ 3.9 x 1072,
A least-square fit of the numerical predictions yielded

o
3

o
o

o
~

Hside/H, Sside/Wb
o
(9]

o
w

A Hside/H (num.

)

02+ B Sside/Wb (num.)
------- Hside/Hb (scale)

0.1 Sside/Wb (scale)

1E+12 2E+12 3E+12 4E+12 5E+12 B6E+12 TE+12 8E+12

Ra

Fig. 5. Minimal thickness of the side bank and location versus
Rayleigh number.



MVF num.
MVF scale (Ra>9E12)
MVF scale (Ra<9E12)

1.5E+13

5E+12 1E+13 2E+13
Ra

Fig. 6. Molten volume fraction versus Rayleigh number.

B=1.19 and 4 =14.7x 1072, On the other hand,
Eq. (27) dictates that the location for the minimum
thickness of the side bank remains independent of the

Table 6
Scale analysis and numerical results

L. Gosselin, M. Lacroix | International Journal of Heat and Mass Transfer 46 (2003) 2537-2545

30
®  Nunum. C]
25 1 Nu scale (Ra<9E12) <
------- Nu scale (Ra>9e12) .
220 T
5
=]
=z
015 T
o
o
g 1
z10
51
0 t + t
0 5E+12 1E+13 1.5E+13 2E+13
Ra

Fig. 7. Average Nusselt number at the surface of the bath
versus Rayleigh number.

Rayleigh number. This result is also confirmed by the
numerical predictions reported in Fig. 5.

Scale analysis relations

Predictions of the scale analysis

Numerical results

‘e = B — ARa (Eq. (26)) N {1 1 1 Kk, } i = 1473 x 1012
W = |+ ~3.9x%10
’ VVL eup + edown 2 Blup Bldown kWHb
B~1 B=1.19
e — 4 (Bq. (27)) _ Odown — Oup - 1 kH,, 1 A=0.71
Odown + 0up Bidown kab Biup
1 kH, 1 1
- - ~~09
Bidown kab Biup 2
fL~7+B (Ra>9 x 102) < )liup+0down 2 % 102 A=59x10"
(Eq. (29))
_ LR B=125
Blup Bldown kab ’
fi~ARa—B (Ra =9 x107) /L A L S S Y S TS A=086x 1013
(Eq. (32)) 2 Wy Oup + Odown |2 Biup = Bidown = kuHo
~0 B=0.16
Nuyy ~ ARa— B (Ra>9 % 10?) (E>ﬁ~21x10 2 A=17x10"
(Eq. (33)) W )0
~0 B=53
Nty ~ ARa — B (Ra <9 x 10?) (1=t ) (1t mn+255) w/ o L A=16x10
(Eq. (35)) A= : 1 - x5\ g |~ 1.2x 10
(2 . Biup + Bigown k\\'v;'Ib ) ° down P
Odown wk —
1;17: (1 rd )(1 T kHHAh) B=284

1

Bigown

Biwp

(244

~ 0.7
1
Biuwp

Hyk
few Hy

)(1+3i)
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The variation of the mean molten volume fraction
with respect to the Rayleigh number is depicted in Fig.
6. As predicted by the scale analysis (Eq. (29)), for
convection dominated heat transfer in the melt,

R

Jo~ j—O—B (39)
The numerical simulations show that this expression
holds for Ra =9 x 10'2. The predictions of the scale
analysis are 4 ~ 2 x 10'? and B ~ 1.5 and the numerical
results yield 4 = 5.90 x 10'> and B = 1.25. On the other
hand, when conduction heat transfer prevails in the
melt, i.e., for Ra <9 x 10", the scale analysis (Eq. (32))
reveals that

fi ~ARa—B (40)

with 4 =~ 2.0 x 107" and B ~ 0. The numerical predic-
tions are 4 = 0.86 x 10713 and B = 0.16. Incidentally, it
is interesting to note that Eq. (39) is valid for f; <0.5
and Eq. (40) for 7 > 0.5.

The effect of Ra on the average Nusselt number at the
surface of the bath is illustrated in Fig. 7. Once again,
the scale analysis is in good agreement with the nu-
merical results. Egs. (33) and (35) show that

Nuty ~ ARa — B (41)

For Ra =9 x 10", the scale analysis yields 4 ~ 2.1 x
10~'? and B ~ 0 compared to 4 = 1.65 x 1072 and B =
5.3 for the numerical simulations. For Ra <9 x 10'2,
the scale analysis shows 4 = 1.2 x 1072 and B =~ 0.7 and
the numerical predictions reveal 4 = 1.59 x 1072 and
B=238.

For convenience, the results reported in Egs. (38)—
(41) are gathered in Table 6.

5. Concluding remarks

A study was conducted for the natural convection
dominated heat transfer and the formation of solid
banks inside a bath of molten slag. A scale analysis of
the problem yielded simple algebraic expressions, later
validated with numerical simulations, for the steady-
state minimal thickness and location of the of the side
bank, for the molten volume fraction and for the aver-
age Nusselt number at the surface of the bath in terms of
the Rayleigh number.
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